Direct regulation of egl-1 and of programmed cell death by the Hox protein MAB-5 and by CEH-20, a C. elegans homolog of Pbx1.
نویسندگان
چکیده
Hox genes are crucial determinants of cell fates and of body morphology of animals; mutations affecting these genes result in abnormal patterns of programmed cell death. How Hox genes regulate programmed cell death is an important and poorly understood aspect of normal development. In the nematode C. elegans, the Hox gene mab-5 is required for the programmed cell deaths of two lineally related cells generated in the P11 and P12 lineages. We show here that in the P11 lineage, a complex between MAB-5 and the Pbx homolog CEH-20 directly regulates transcription of the BH3 domain gene egl-1 to initiate programmed cell death; in the P12 lineage, mab-5 and ceh-20 apparently act indirectly to initiate programmed cell death. Direct regulation of programmed cell death may be an evolutionarily ancient and conserved function of Hox genes.
منابع مشابه
The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9.
The developmental control of apoptosis is fundamental and important. We report that the Caenorhabditis elegans Bar homeodomain transcription factor CEH-30 is required for the sexually dimorphic survival of the male-specific CEM (cephalic male) sensory neurons; the homologous cells of hermaphrodites undergo programmed cell death. We propose that the cell-type-specific anti-apoptotic gene ceh-30 ...
متن کاملSix and Eya promote apoptosis through direct transcriptional activation of the proapoptotic BH3-only gene egl-1 in Caenorhabditis elegans.
The decision of a cell to undergo programmed cell death is tightly regulated during animal development and tissue homeostasis. Here, we show that the Caenorhabditis elegans Six family homeodomain protein C. elegans homeobox (CEH-34) and the Eyes absent ortholog EYA-1 promote the programmed cell death of a specific pharyngeal neuron, the sister of the M4 motor neuron. Loss of either ceh-34 or ey...
متن کاملNeuronal cell migration in C. elegans: regulation of Hox gene expression and cell position.
In C. elegans, the Hox gene mab-5, which specifies the fates of cells in the posterior body region, has been shown to direct the migrations of certain cells within its domain of function. mab-5 expression switches on in the neuroblast QL as it migrates into the posterior body region. mab-5 activity is then required for the descendants of QL to migrate to posterior rather than anterior positions...
متن کاملAnterior organization of the Caenorhabditis elegans embryo by the labial-like Hox gene ceh-13.
The Caenorhabditis elegans lin-39, mab-5 and egl-5 Hox genes specify cell fates along the anterior-posterior body axis of the nematode during postembryonic development, but little is known about Hox gene functions during embryogenesis. Here, we show that the C. elegans labial-like gene ceh-13 is expressed in cells of many different tissues and lineages and that the rostral boundary of its expre...
متن کاملThe Caenorhabditis elegans Ror RTK CAM-1 inhibits EGL-20/Wnt signaling in cell migration.
During Caenorhabditis elegans development, the HSN neurons and the right Q neuroblast and its descendants undergo long-range anteriorly directed migrations. Both of these migrations require EGL-20, a C. elegans Wnt homolog. Through a canonical Wnt signaling pathway, EGL-20/Wnt transcriptionally activates the Hox gene mab-5 in the left Q neuroblast and its descendants, causing the cells to migra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 133 4 شماره
صفحات -
تاریخ انتشار 2006